STAT 2593

Lecture 037 - Inferences Concerning a Difference Between Population Proportions

Dylan Spicker

Inferences Concerning a Difference Between Population Proportions

Learning Objectives

1. Construct hypothesis tests and confidence intervals for two sample tests of proportions.

We have currently assumed sample means on continuous data from (approximately) normally distributed populations.

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- ▶ What if we have two samples from binomial distributions?

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- ▶ What if we have two samples from binomial distributions?
 - X comes from a $Bin(n, p_1)$ distribution.

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- ▶ What if we have two samples from binomial distributions?
 - > X comes from a $Bin(n, p_1)$ distribution.
 - Y comes from a $Bin(m, p_2)$ distribution.

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- ▶ What if we have two samples from binomial distributions?
 - X comes from a $Bin(n, p_1)$ distribution.
 - Y comes from a $Bin(m, p_2)$ distribution.
 - ► X and Y are independent.

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- ▶ What if we have two samples from binomial distributions?
 - X comes from a $Bin(n, p_1)$ distribution.
 - Y comes from a $Bin(m, p_2)$ distribution.
 - ► X and Y are independent.
- ▶ We are interested in the difference in proportions, $p_1 p_2$.

▶ The estimator given by $\hat{p}_1 - \hat{p}_2$ will be unbiased for $p_1 - p_2$.

▶ The estimator given by $\hat{p}_1 - \hat{p}_2$ will be unbiased for $p_1 - p_2$.

$$rac{p_1(1-p_1)}{n} + rac{p_2(1-p_2)}{m}.$$

▶ The estimator given by $\hat{p}_1 - \hat{p}_2$ will be unbiased for $p_1 - p_2$.

This will have variance

$$rac{p_1(1-p_1)}{n} + rac{p_2(1-p_2)}{m}.$$

As long as the normal approximation would apply for each sample individually, we can use the normal approximation here for confidence intervals and hypothesis tests.

▶ The estimator given by $\hat{p}_1 - \hat{p}_2$ will be unbiased for $p_1 - p_2$.

$$rac{p_1(1-p_1)}{n} + rac{p_2(1-p_2)}{m}.$$

- As long as the normal approximation would apply for each sample individually, we can use the normal approximation here for confidence intervals and hypothesis tests.
 - Confidence intervals are constructed in exactly the expected way.

▶ The estimator given by $\hat{p}_1 - \hat{p}_2$ will be unbiased for $p_1 - p_2$.

$$\frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}.$$

- As long as the normal approximation would apply for each sample individually, we can use the normal approximation here for confidence intervals and hypothesis tests.
 - Confidence intervals are constructed in exactly the expected way.
 - Hypothesis tests only work if we test H_0 : $p_1 = p_2$.

▶ The estimator given by $\hat{p}_1 - \hat{p}_2$ will be unbiased for $p_1 - p_2$.

$$rac{p_1(1-p_1)}{n} + rac{p_2(1-p_2)}{m}.$$

- As long as the normal approximation would apply for each sample individually, we can use the normal approximation here for confidence intervals and hypothesis tests.
 - Confidence intervals are constructed in exactly the expected way.
 - Hypothesis tests only work if we test $H_0: p_1 = p_2$.
- Under the assumption $p_1 = p_2 = p$, we have variance $p(1-p)\left(\frac{1}{m} + \frac{1}{n}\right)$

Two populations from independent binomial distributions can have their proportions tested through a difference in sample proportions, so long as we assume independence.

The approximation is only valid enough for the null hypothesis of equality.