STAT 2593

Lecture 037 - Inferences Concerning a Difference Between Population Proportions

Dylan Spicker

Inferences Concerning a Difference Between Population
 Proportions

Learning Objectives

1. Construct hypothesis tests and confidence intervals for two sample tests of proportions.

Two Sample Proportion Tests

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.

Two Sample Proportion Tests

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- What if we have two samples from binomial distributions?

Two Sample Proportion Tests

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- What if we have two samples from binomial distributions?
- X comes from a $\operatorname{Bin}\left(n, p_{1}\right)$ distribution.

Two Sample Proportion Tests

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- What if we have two samples from binomial distributions?
- X comes from a $\operatorname{Bin}\left(n, p_{1}\right)$ distribution.
- Y comes from a $\operatorname{Bin}\left(m, p_{2}\right)$ distribution.

Two Sample Proportion Tests

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- What if we have two samples from binomial distributions?
- X comes from a $\operatorname{Bin}\left(n, p_{1}\right)$ distribution.
- Y comes from a $\operatorname{Bin}\left(m, p_{2}\right)$ distribution.
- X and Y are independent.

Two Sample Proportion Tests

- We have currently assumed sample means on continuous data from (approximately) normally distributed populations.
- What if we have two samples from binomial distributions?
- X comes from a $\operatorname{Bin}\left(n, p_{1}\right)$ distribution.
- Y comes from a $\operatorname{Bin}\left(m, p_{2}\right)$ distribution.
- X and Y are independent.
- We are interested in the difference in proportions, $p_{1}-p_{2}$.

Estimating the Difference in Proportions

- The estimator given by $\hat{p}_{1}-\hat{p}_{2}$ will be unbiased for $p_{1}-p_{2}$.

Estimating the Difference in Proportions

- The estimator given by $\hat{p}_{1}-\hat{p}_{2}$ will be unbiased for $p_{1}-p_{2}$.
- This will have variance

$$
\frac{p_{1}\left(1-p_{1}\right)}{n}+\frac{p_{2}\left(1-p_{2}\right)}{m} .
$$

Estimating the Difference in Proportions

- The estimator given by $\hat{p}_{1}-\hat{p}_{2}$ will be unbiased for $p_{1}-p_{2}$.
- This will have variance

$$
\frac{p_{1}\left(1-p_{1}\right)}{n}+\frac{p_{2}\left(1-p_{2}\right)}{m} .
$$

- As long as the normal approximation would apply for each sample individually, we can use the normal approximation here for confidence intervals and hypothesis tests.

Estimating the Difference in Proportions

- The estimator given by $\hat{p}_{1}-\hat{p}_{2}$ will be unbiased for $p_{1}-p_{2}$.
- This will have variance

$$
\frac{p_{1}\left(1-p_{1}\right)}{n}+\frac{p_{2}\left(1-p_{2}\right)}{m} .
$$

- As long as the normal approximation would apply for each sample individually, we can use the normal approximation here for confidence intervals and hypothesis tests.
- Confidence intervals are constructed in exactly the expected way.

Estimating the Difference in Proportions

- The estimator given by $\hat{p}_{1}-\hat{p}_{2}$ will be unbiased for $p_{1}-p_{2}$.
- This will have variance

$$
\frac{p_{1}\left(1-p_{1}\right)}{n}+\frac{p_{2}\left(1-p_{2}\right)}{m} .
$$

- As long as the normal approximation would apply for each sample individually, we can use the normal approximation here for confidence intervals and hypothesis tests.
- Confidence intervals are constructed in exactly the expected way.
- Hypothesis tests only work if we test $H_{0}: p_{1}=p_{2}$.

Estimating the Difference in Proportions

- The estimator given by $\hat{p}_{1}-\hat{p}_{2}$ will be unbiased for $p_{1}-p_{2}$.
- This will have variance

$$
\frac{p_{1}\left(1-p_{1}\right)}{n}+\frac{p_{2}\left(1-p_{2}\right)}{m}
$$

- As long as the normal approximation would apply for each sample individually, we can use the normal approximation here for confidence intervals and hypothesis tests.
- Confidence intervals are constructed in exactly the expected way.
- Hypothesis tests only work if we test $H_{0}: p_{1}=p_{2}$.
- Under the assumption $p_{1}=p_{2}=p$, we have variance $p(1-p)\left(\frac{1}{m}+\frac{1}{n}\right)$

Summary

- Two populations from independent binomial distributions can have their proportions tested through a difference in sample proportions, so long as we assume independence.
- The approximation is only valid enough for the null hypothesis of equality.

